4 resultados para Chaperonas

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chromobacterium violaceum is a free-living bacillus, Gram-negative commonly found in water and sand of tropical and subtropical regions. One of its main characteristic it's the ability to produce the purple pigment named violacein, that shows countless biological activities. In 2003, the genome of this organism was totally sequenced and revealed important informations about the physiology of this bacteria. However, few post-genomics studies had been accomplished. This work evaluated the protein profile of C. violaceum cultivated in LB medium at 28ºC that allowed the identification and characterization of proteins related to a possible secretion system that wasn't identified and characterized yet in C. violaceum, to the quorum sensing system, to regulatory process of transcription and translation, stress adaptation and biotechnological potential. Moreover, the response of the bacteria to UVC radiation was evaluated. The comparison of the protein profile, analyzed through 2-D electrophoresis, of the control group versus the treatment group allowed the identification of 52 proteins that arose after stress induction. The obtained results enable the elaboration of a stress response pathway in C. violaceum generated by the UVC light. This pathway, that seems to be a general stress response, involves the expression of proteins related to cellular division, purine and pirimidine metabolism, heat chock or chaperones, energy supply, regulation of biofilm formation, transport, regulation of lytic cycle of bacteriophages, besides proteins that show undefined function. Despite the response present similarities with the classic SOS response of E. coli, we still cannot assert that C. violaceum shows a SOS-like response, mainly due to the absence of characterization of a LexA-like protein in this organism

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The screening for genes in metagenomic libraries from soil creates opportunities to explore the enormous genetic and metabolic diversity of microorganisms. Rivers are ecosystems with high biological diversity, but few were examined using the metagenomic approach. With this objective, a metagenomic library was constructed from DNA soil samples collected at three different points along the Jundiaí-river (Rio Grande do Norte-Brazil). The points sampled are from open area, rough terrain and with the direct incidence of sunlight. This library was analyzed functionally and based in sequence. For functional analysis Luria-Bertani solid medium (LB) with NaCl concentration varied from 0.17M to 0.85M was used for functional analysis. Positives clones resistant to hypersaline medium were obtained. The recombinant DNAs were extracted and transformed into Escherichia coli strain DH10B and survival curves were obtained for quantification of abiotic stress resistance. The sequences of clones were obtained and submitted to the BLASTX tool. Some clones were found to hypothetical proteins of microorganisms from both Archaea and Bacteria division. One of the clones showed a complete ORF with high similarity to glucose-6-phosphate isomerase which participates in the synthesis of glycerol pathway and serves as a compatible solute to balance the osmotic pressure inside and outside of cells. Subsequently, in order to identify genes encoding osmolytes or enzymes related halotolerance, environmental DNA samples from the river soil, from the water column of the estuary and ocean were collected and pyrosequenced. Sequences of osmolytes and enzymes of different microorganisms were obtained from the UniProt and used as RefSeqs for homology identification (TBLASTN) in metagenomic databases. The sequences were submitted to HMMER for the functional domains identification. Some enzymes were identified: alpha-trehalose-phosphate synthase, L-ectoina synthase (EctC), transaminase L-2 ,4-diaminobutyric acid (EctB), L-2 ,4-diaminobutyric acetyltransferase (EctA), L-threonine 3 dehydrogenase (sorbitol pathway), glycerol-3-phosphate dehydrogenase, inositol 3-phosphate dehydrogenase, chaperones, L-proline, glycine betaine binding ABC transporter, myo-inositol-1-phosphate synthase protein of proline simportadora / PutP sodium-and trehalose-6-phosphate phosphatase These proteins are commonly related to saline environments, however the identification of them in river environment is justified by the high salt concentration in the soil during prolonged dry seasons this river. Regarding the richness of the microbiota the river substrate has an abundance of halobacteria similar to the sea and more than the estuary. These data confirm the existence of a specialized response against salt stress by microorganisms in the environment of the Jundiaí river

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chromobacterium violaceum is a free-living bacillus, Gram-negative commonly found in water and sand of tropical and subtropical regions. One of its main characteristic it's the ability to produce the purple pigment named violacein, that shows countless biological activities. In 2003, the genome of this organism was totally sequenced and revealed important informations about the physiology of this bacteria. However, few post-genomics studies had been accomplished. This work evaluated the protein profile of C. violaceum cultivated in LB medium at 28ºC that allowed the identification and characterization of proteins related to a possible secretion system that wasn't identified and characterized yet in C. violaceum, to the quorum sensing system, to regulatory process of transcription and translation, stress adaptation and biotechnological potential. Moreover, the response of the bacteria to UVC radiation was evaluated. The comparison of the protein profile, analyzed through 2-D electrophoresis, of the control group versus the treatment group allowed the identification of 52 proteins that arose after stress induction. The obtained results enable the elaboration of a stress response pathway in C. violaceum generated by the UVC light. This pathway, that seems to be a general stress response, involves the expression of proteins related to cellular division, purine and pirimidine metabolism, heat chock or chaperones, energy supply, regulation of biofilm formation, transport, regulation of lytic cycle of bacteriophages, besides proteins that show undefined function. Despite the response present similarities with the classic SOS response of E. coli, we still cannot assert that C. violaceum shows a SOS-like response, mainly due to the absence of characterization of a LexA-like protein in this organism

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The screening for genes in metagenomic libraries from soil creates opportunities to explore the enormous genetic and metabolic diversity of microorganisms. Rivers are ecosystems with high biological diversity, but few were examined using the metagenomic approach. With this objective, a metagenomic library was constructed from DNA soil samples collected at three different points along the Jundiaí-river (Rio Grande do Norte-Brazil). The points sampled are from open area, rough terrain and with the direct incidence of sunlight. This library was analyzed functionally and based in sequence. For functional analysis Luria-Bertani solid medium (LB) with NaCl concentration varied from 0.17M to 0.85M was used for functional analysis. Positives clones resistant to hypersaline medium were obtained. The recombinant DNAs were extracted and transformed into Escherichia coli strain DH10B and survival curves were obtained for quantification of abiotic stress resistance. The sequences of clones were obtained and submitted to the BLASTX tool. Some clones were found to hypothetical proteins of microorganisms from both Archaea and Bacteria division. One of the clones showed a complete ORF with high similarity to glucose-6-phosphate isomerase which participates in the synthesis of glycerol pathway and serves as a compatible solute to balance the osmotic pressure inside and outside of cells. Subsequently, in order to identify genes encoding osmolytes or enzymes related halotolerance, environmental DNA samples from the river soil, from the water column of the estuary and ocean were collected and pyrosequenced. Sequences of osmolytes and enzymes of different microorganisms were obtained from the UniProt and used as RefSeqs for homology identification (TBLASTN) in metagenomic databases. The sequences were submitted to HMMER for the functional domains identification. Some enzymes were identified: alpha-trehalose-phosphate synthase, L-ectoina synthase (EctC), transaminase L-2 ,4-diaminobutyric acid (EctB), L-2 ,4-diaminobutyric acetyltransferase (EctA), L-threonine 3 dehydrogenase (sorbitol pathway), glycerol-3-phosphate dehydrogenase, inositol 3-phosphate dehydrogenase, chaperones, L-proline, glycine betaine binding ABC transporter, myo-inositol-1-phosphate synthase protein of proline simportadora / PutP sodium-and trehalose-6-phosphate phosphatase These proteins are commonly related to saline environments, however the identification of them in river environment is justified by the high salt concentration in the soil during prolonged dry seasons this river. Regarding the richness of the microbiota the river substrate has an abundance of halobacteria similar to the sea and more than the estuary. These data confirm the existence of a specialized response against salt stress by microorganisms in the environment of the Jundiaí river